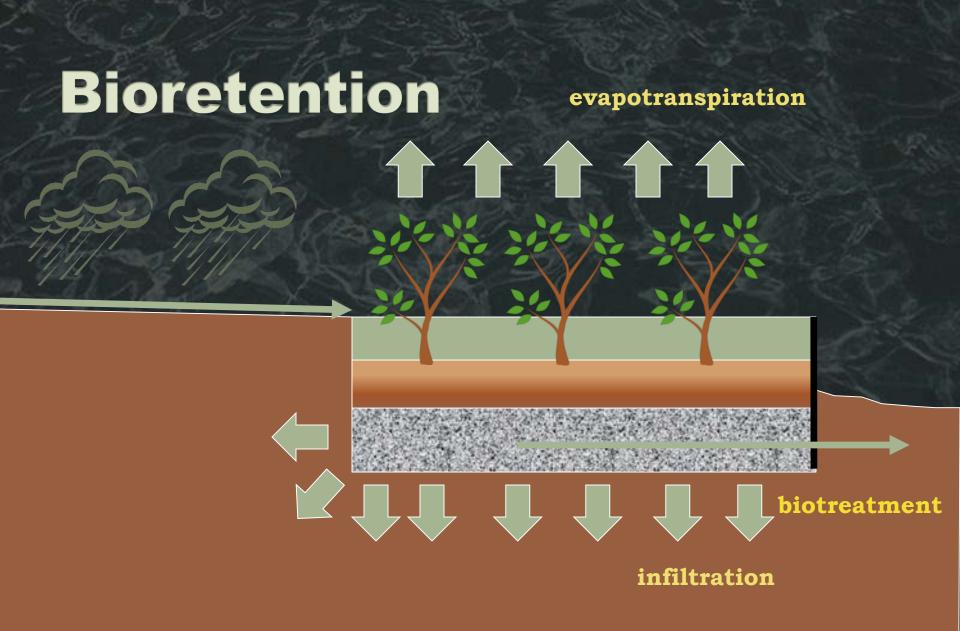

Building and Testing Rain Gardens

To Meet NPDES Retention and Hydromodification Management Requirements

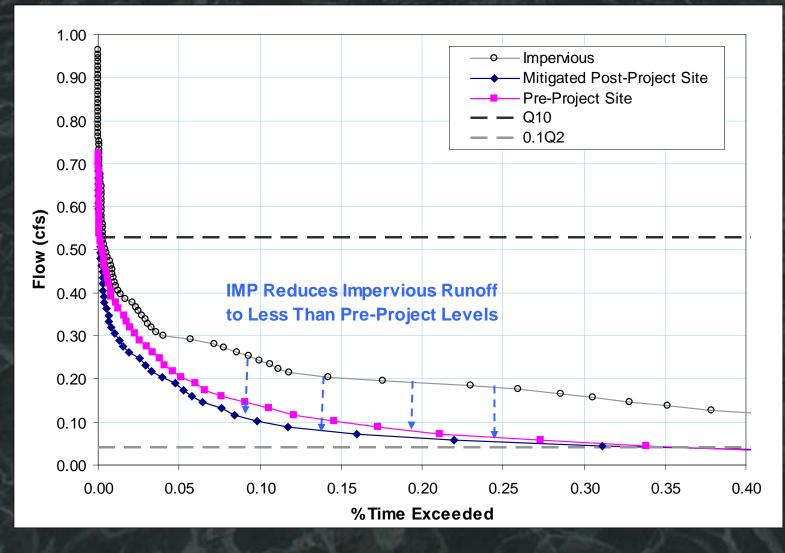
Tom Dalziel Program Manager, Contra Costa Clean Water Program **Dan Cloak** Dan Cloak Environmental Consulting *CASQA Conference, September 27, 2011*

 21 Copermittees
 One million residents
 Oldest city incomporated in incorporated in
 Annual rainfall
 Mostly clay soil



LID in Contra Costa

Stormwater C.3 Guidebook published 2005 ♦ LID approach to treatment ♦ Well received and widely implemented Continuously improved under direction of municipal staff ♦ Fifth Edition published 10/20/2010 Hydrograph Modification Management Plan (HMP) approved 2006 • Uses LID to control flow peaks and durations Based on computer-modeled performance of bioretention and other LID facilities • HMP requires monitoring 5 locations to validate model


Topics

• Bioretention: • What we don't know • Why we need to know it Model of Bioretention Performance A Rate and duration of underdrain discharge • Design of Our Experiment to Validate Model • Design and Construction of Bioretention **Facilities and Monitoring Instrumentation** ♦ Office Building Residential Townhouse Development

What proportion of runoff goes where?

Hydromod: What's it mean?

NN

Modeling Bioretention

inflow

evapotranspiration

underdrain

infiltration

V₁

Min 18" soil mix

V₂

About the Model

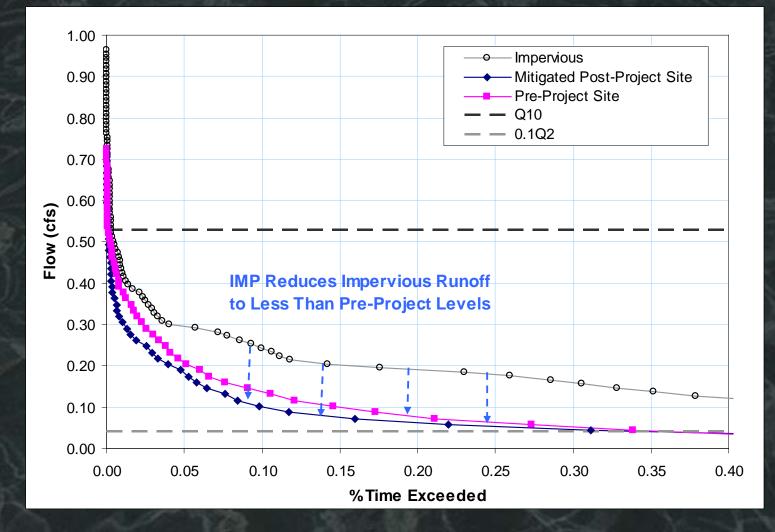
- A watershed model (HSPF) was adapted to characterize bioretention performance.
 - Stage-storage discharge relationships for each layer represented within FTABLEs in HSPF.
 - At each time step, moisture content of the bioretention soil media, matric head within soil pores, and hydraulic conductivity of the soil media are recalculated.
- Watershed models are typically calibrated using stream gage data. This model is uncalibrated.

Limitations of the model

- Pan evaporation was used to calculate evapotranspiration.
- Single, textbook values were used for hydraulic conductivity of underlying soils.
- Lateral movement of moisture from the bioretention media and gravel layer into the surrounding soil was not accounted for.
 The effects of head above the underlying soil surface were not accounted for.

Model output: hourly flow

Hour #	Flow (cfs)
1	0.0
2	0.0
3	0.1
4	0.1
5	0.0
6	0.2
7	1.5
8	0.6
Etc.	



250,000 hours: Sort by flow

Hour #	Flow (cfs)	Hours exceeded						
115241	10.3	0						
4598	10.3	1	This flow was exceeded					
3672	10.2	2 ←						
115242	10.0	3	hours (0.0008%)					
243581	10.0	4	ATTANDO TO					
66058	9.9	5	MR STAR					
75291	9.8	6	A Clark					
186540	9.7	7 🔶	This flow was exceeded during 7 hours/250,000					
Etc.			hours (0.0028%)					

Plot Results: Compliance

NN

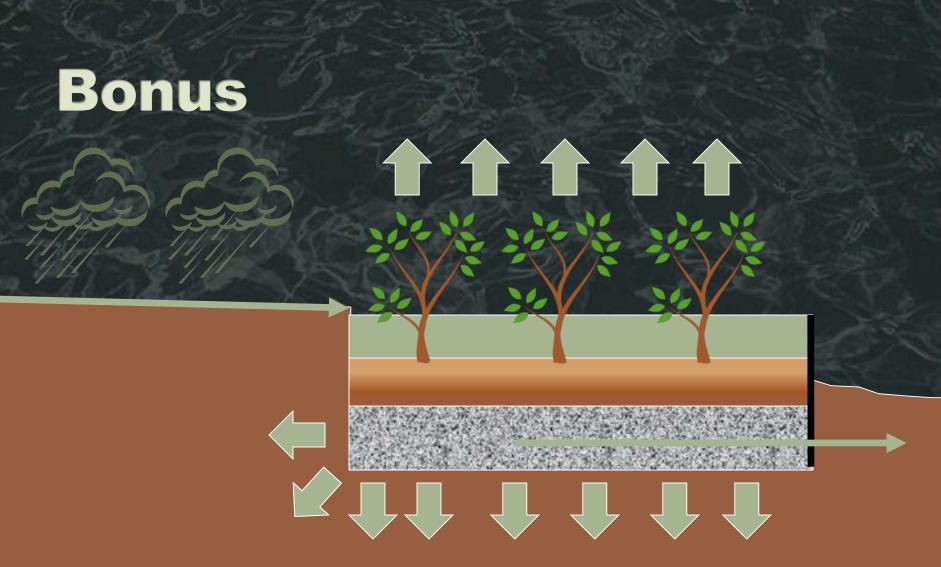
Sizing Factors

and the second	1	Area	Volume	Volume	Rainfall	Rainfall	Maximum
Facility Design	Soil Group	\mathbf{A} $(\mathrm{ft}^2/\mathrm{ft}^2)$	$V_{1} \\ (\mathrm{ft}^3/\mathrm{ft}^2)$	$\frac{V_2}{(\mathrm{ft}^3/\mathrm{ft}^2)}$	Adjustment for Surface Area	Adjustment for Storage Volume	Release Rate
All summer and	А	0.07	0.058	No min.	Eq. 4-6	Eq. 4-6	No orifice
Bioretention	В	0.11	0.092	No min.	Eq. 4-7	Eq. 4-7	No orifice
Facility	С	0.06	0.050	0.066	Eq. 4-8	Eq. 4-8	Eq. 4-10
	D	0.05	0.042	0.055	Eq. 4-9*	Eq. 4-9	Eq. 4-11
Flow-	А	1 Dente			tted in "A" soils		and the second
	В	20 NT		Not permit	ted in "B" soils		
through	С	0.06	0.050	0.066			Entertaint
Planter	D	0.05	0.042	0.055			
CALARA.	А	0.05	0.130	N/A		V ₁	$\overline{}$
Der Wall	В	0.06	0.204	N/A			
Dry Well	С			Not permitt		← A Z →	
19-27-	D	1 and the	- de	Not permitt		<u> </u>	
the second second	А	0.020	0.193	N/A	Ţ	Min 18" soil mix	7
Cistern +	В	0.009	0.210	N/A			12
Bioretention	С	0.013	0.105	N/A			-10
	D	0.017	0.063	N/A		V ₂	-11
and the second	А	0.04	N/A	0.096			elease
Bioretention	В	0.04	N/A	0.22			4-12
+ Vault	С	0.04	N/A	0.15			. 4-10
	D	0.04	N/A	0.064	N/A	Eq. 4-9	

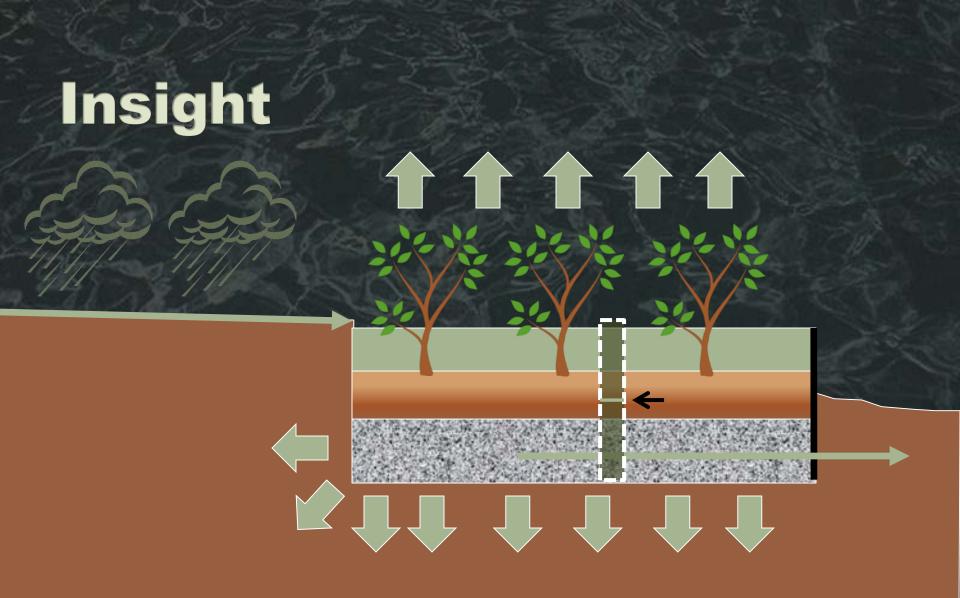
Now, for a real installation:

Collecton-site raingage data.

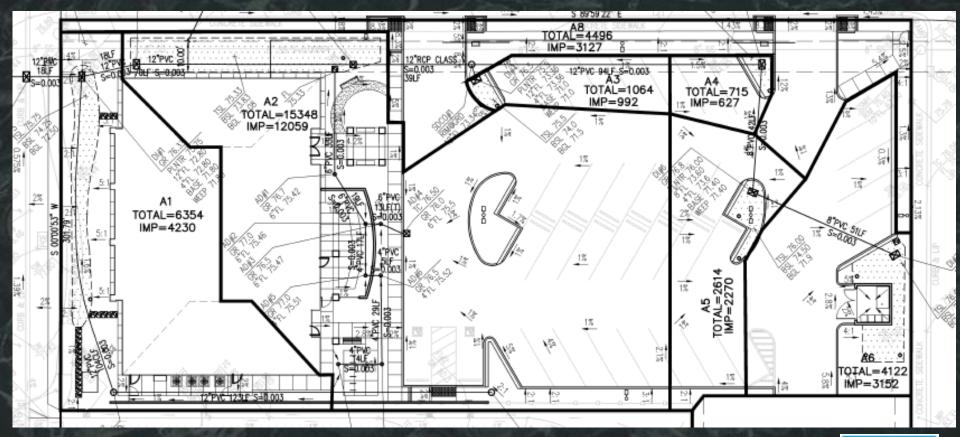
Calculate hourly inflow for the real tributary area


3 Use the model to predict hourly ET, infiltration, and underdrain flow

Measure actual underdrain flow.

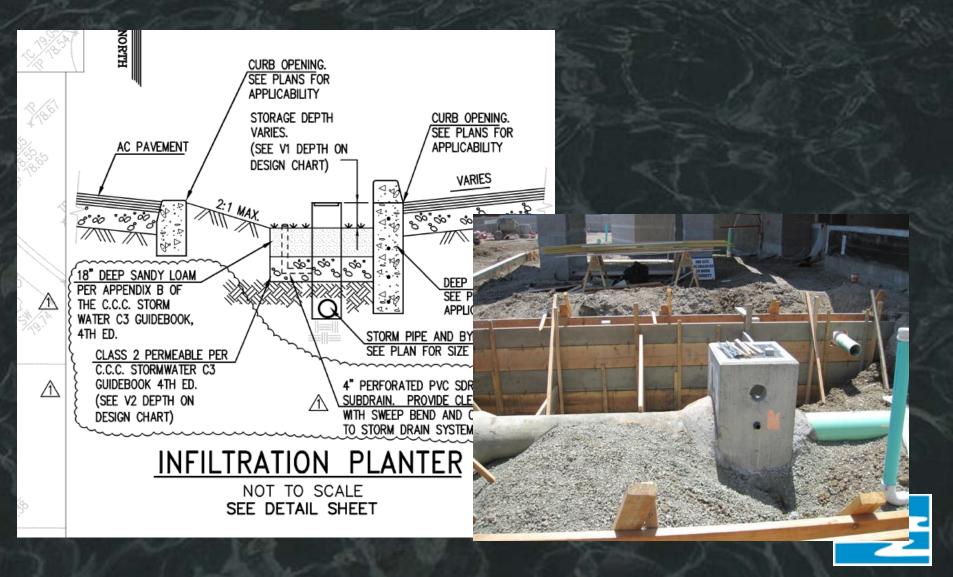

Model Validation/Tweaking

- Compare predicted to actual outflow rates (hour by hour).
- 6 Tweak the model inputs so that model output more accurately represents actual underdrain discharge (hour-by-hour and storm-by-storm).
- Then, use those new model inputs to recalculate sizing factors for bioretention minimum area (A), surface storage volume (V₁) and subsurface storage volume (V₂).



We can then input 30+ years of rainfall data and use our validated/tweaked model to predict the percent infiltrated + evapotranspirated (annual average).

Within some of the facilities, we will also track saturation level.


Fire Protection Building

Sizing per Guidebook

STORM TREATMENT DESIGN (PER CONTRA COSTA COUNTY)																
MP NAVE	TYPE	SOIL GROUP	RAIN ADJ. FACTOR	A SIZING FACTOR	VI Sizing Factor	V2 Sizing Factor	D.M. AREA (S.F.)	RUNOFF FACTOR	MIN. SIZE (S.F.)	PLANNED SIZE (S.F.)	VI REQUIRED (C.F.)	V1 PROVIDED (C.F.)	V2 REQUIRED (C.F.)	V2 PROVIDED (C.F.) (POROSITY=0.4)	MAX. FLOW (ORIFICE SIZE)	
A1	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	1582	0.7	339 542	542	542 285	(VI-DEPTH = 7")	373	379 (V2-DEPTH=21")	0.01 CFS	
	PLANTER	-		0.00	0.0.12	0.000	4230	1		-					(0.51" DIAM.)	
A2	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	2415	0.7	873	874 734	874	960	961	0.02 CFS		
	PLANTER						12059	1				(V1-DEPTH = 12")		(V2-DEPTH=33")	(0.81" DIAM.)	
A3	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	0	0.7	63	72	53	72	70	72 (V2-DEPTH=30")	0.00 CFS	
	PLANTER				5.0.12			992	1				(V1-DEPTH = 12")		(¥2-06°IN=30)	(0.21" DIAM.)
A4	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	0	0.7	40	88	34	44 (VI-DEPTH = 6")	44	44 (V2-DEPTH=15")	0.00 CFS	
	PLANTER '						627	1							(0.17" DIAM.)	
A5	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	180	0.7	152	164	¹²⁷ (M	130 (VI-DEPTH = 9.5")	167	170 (V2-DEPTH=31")	0.00 CFS (0.32" DIAM.)	
	PLANTER						2270	1								
Aß	IN-GROUND (INFILTRATION)	D	1.27	0.05	0.042	0.055	562	0.7	225	408	408 189	204 (VI-DEPTH = 6")	247	258 (V2-depth=19")	0.00 CFS	
	PLANTER						3152	1							(0.41° DIAM.)	
A7	SELF-TREATING	D	1.27	0.05	0.042	0.055	12767	0.7								
	(ALL PERVIOUS)						0	1								
AB	UN-TREATABLE	D	1.27	0.05	0.042	0.055	1369	0.7								
							3127	1								
т	TOTAL PROJECT SITE AREA: 47480 S.F. (1.09 ACRE)					18875 26457			2148							

Design and Construction

Outlet Design

ity

r as

ulch if

 $_{
m b}$ achieve V₁

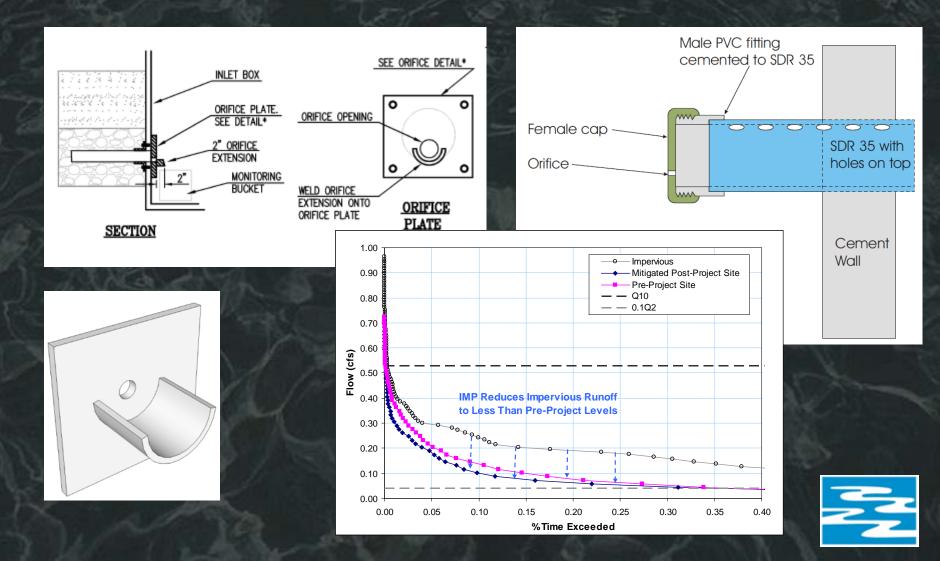
n landscape

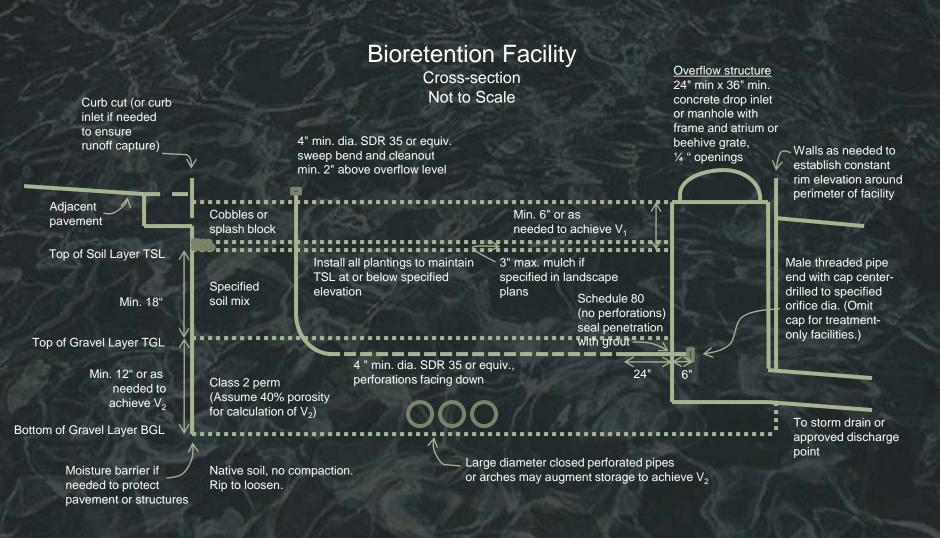
Schedule 80

(no perforations) seal penetration with grout

24"

6"


...........


Overflow elevation

Overflow structure 24" min x 36" min. concrete drop inlet or manhole with frame and atri or beehive grat ¼ " openings

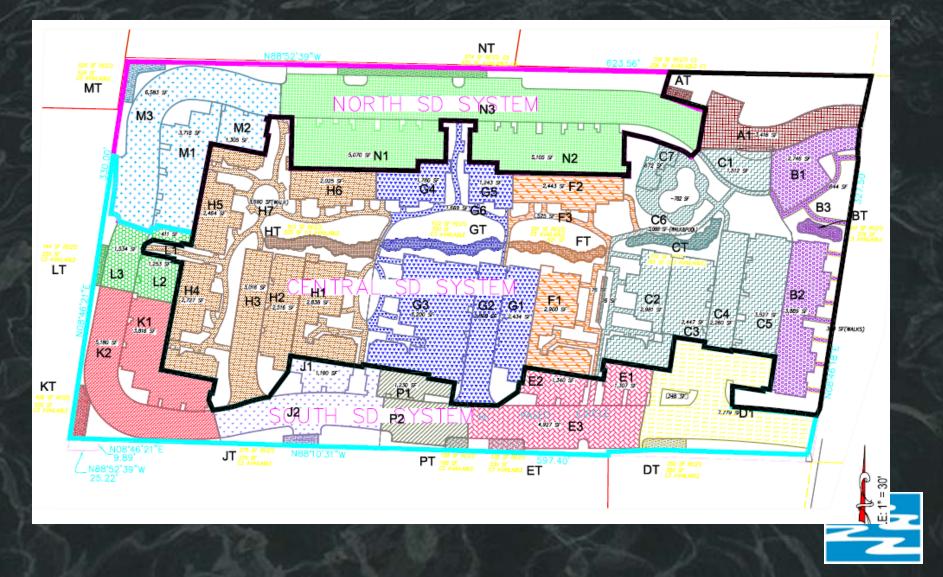
To storm drain or approved discharge

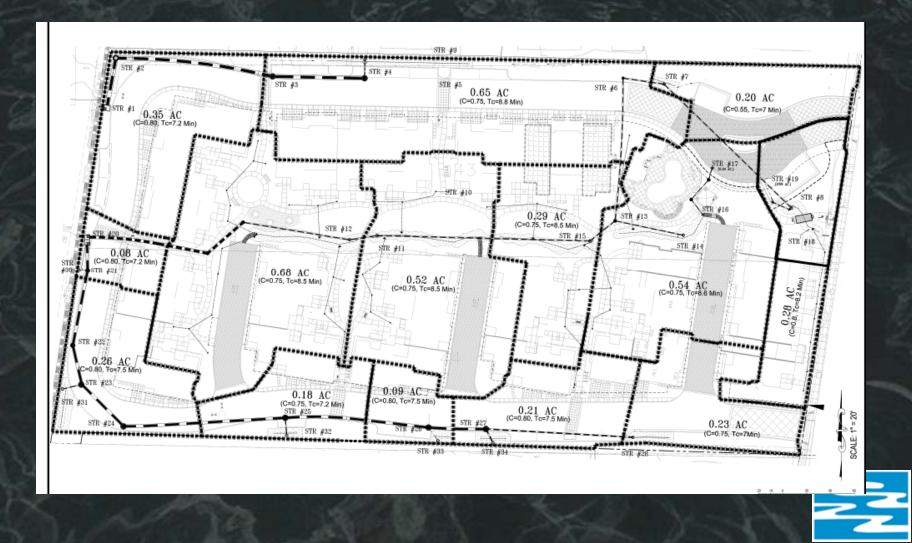
Orifice Design

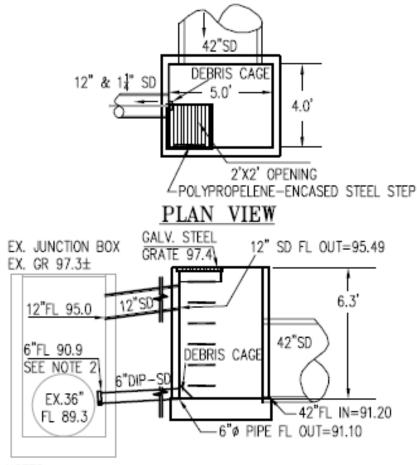
Notes:

- No liner, no filter fabric, no landscape cloth.
- Maintain BGL. TGL, TSL throughout facility area at elevations to be specified in plan.
- Class 2 perm layer may extend below and underneath drop inlet.
- Preferred elevation of perforated pipe underdrain is near top of gravel layer.
- See Appendix B for soil mix specification, planting and irrigation guidance.
- See Chapter 4 for factors and equations used to calculate V₁, V₂ and orifice diameter.

Instrumentation

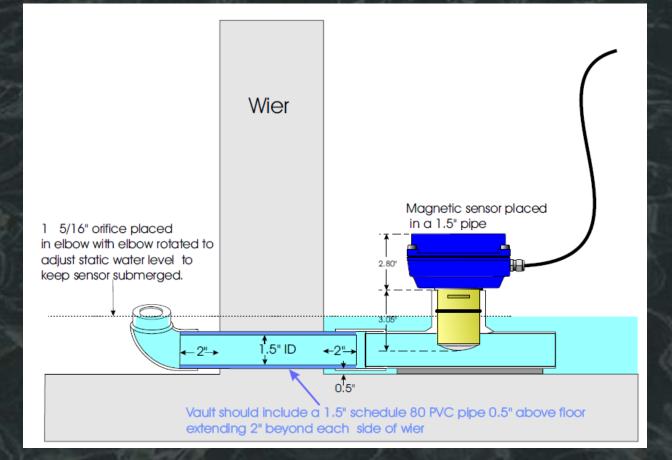

Hydro Services TV!LT Tipping Bucket


Required 12" clear from orifice to bottom of catch basin Installed weir and pump system to prevent storm drain backups from flooding instrumentation


Walden Park Commons

Walden Park Commons

Outlet Des


NOTES;

1. CONNECT 3± LF OF 12" AND 6" SD TO EXISTING INLET.

2. CAP END OF 6" PVC AND DRILL A 1 ¼" Ø HOLE ORIFICE ON THE CAP AT PIPE FLOWLINE. COVER SHALL BE A FEMALE THREADED CAP THAT CAN BE REMOVE FOR CLEANING.

 $\frac{\text{SDSTR\# 1}}{\text{SCALE: 1" = 5'}} (48"X60"BOX)$

Magmeter Installation

M

Ready to begin monitoring

Status and Schedule

- Development projects completed summer 2011.
- Instrumentation installed September 2011.
- Data collection during 2011-2012 and 2012-2013 rainy seasons.
- Analysis of initial data during 2012.
 Report due to SF Bay Water Board April 1, 2014

Credits and Info

 Jolan Longway, City of Pittsburg
 Carlton Thompson, City of Walnut Creek
 Scott McQuarrie and Mark Boucher, Contra Costa Flood Control District
 www.cccleanwater.org or search for "Contra Costa Stormwater"

